Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters

Language
Document Type
Year range
1.
Guillaume Butler-Laporte; Gundula Povysil; Jack Kosmicki; Elizabeth T Cirulli; Theodore Drivas; Simone Furini; Chadi Saad; Axel Schmidt; Pawel Olszewski; Urszula Korotko; Mathieu Quinodoz; Elifnaz Celik; Kousik Kundu; Klaudia Walter; Junghyung Jung; Amy D Stockwell; Laura G Sloofman; Alexander W Charney; Daniel Jordan; Noam Beckmann; Bartlomiej Przychodzen; Timothy Chang; Tess D Pottinger; Ning Shang; Fabian Brand; Francesca Fava; Francesca Mari; Karolina Chwialkowska; Magdalena Niemira; Szymon Pula; J Kenneth Baillie; Alex Stuckey; Andrea Ganna; Konrad J Karczewski; Kumar Veerapen; Mathieu Bourgey; Guillaume Bourque; Robert JM Eveleigh; Vincenzo Forgetta; David Morrison; David Langlais; Mark Lathrop; Vincent Mooser; Tomoko Nakanishi; Robert Frithiof; Michael Hultstrom; Miklos Lipcsey; Yanara Marincevic-Zuniga; Jessica Nordlund; Kelly M Schiabor Barrett; William Lee; Alexandre Bolze; Simon White; Stephen Riffle; Francisco Tanudjaja; Efren Sandoval; Iva Neveux; Shaun Dabe; Nicolas Casadei; Susanne Motameny; Manal Alaamery; Salam Massadeh; Nora Aljawini; Mansour S Almutairi; Yaseen M Arab; Saleh A Alqahtan; Fawz S Al Harthi; Amal Almutairi; Fatima Alqubaishi; Sarah Alotaibi; Albandari Binowayn; Ebtehal A Alsolm; Hadeel El Bardisy; Mohammad Fawzy; - COVID-19 Host Genetics Initiative; - DeCOI Host Genetics Group; - GEN-COVID Multicenter Study; - GenOMICC Consortium; - Japan COVID-19 Task Force; - Regeneron Genetics Center; Daniel H Geschwind; Stephanie Arteaga; Alexis Stephens; Manish J Butte; Paul C Boutros; Takafumi N Yamaguchi; Shu Tao; Stefan Eng; Timothy Sanders; Paul J Tung; Michael E Broudy; Yu Pan; Alfredo Gonzalez; Nikhil Chavan; Ruth Johnson; Bogdan Pasaniuc; Brian Yaspan; Sandra Smieszek; Carlo Rivolta; Stephanie Bibert; Pierre-Yves Bochud; Maciej Dabrowski; Pawel Zawadzki; Mateusz Sypniewski; El?bieta Kaja; Pajaree Chariyavilaskul; Voraphoj Nilaratanakul; Nattiya Hirankarn; Vorasuk Shotelersuk; Monnat Pongpanich; Chureerat Phokaew; Wanna Chetruengchai; Yosuke Kawai; Takanori Hasegawa; Tatsuhiko Naito; Ho Namkoong; Ryuya Edahiro; Akinori Kimura; Seishi Ogawa; Takanori Kanai; Koichi Fukunaga; Yukinori Okada; Seiya Imoto; Satoru Miyano; Serghei Mangul; Malak S Abedalthagafi; Hugo Zeberg; Joseph J Grzymski; Nicole L Washington; Stephan Ossowski; Kerstin U Ludwig; Eva C Schulte; Olaf Riess; Marcin Moniuszko; Miroslaw Kwasniewski; Hamdi Mbarek; Said I Ismail; Anurag Verma; David B Goldstein; Krzysztof Kiryluk; Alessandra Renieri; Manuel Ferreira; J Brent Richards.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.28.22273040

ABSTRACT

Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,048 severe disease cases and 571,009 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75-10.05, p=5.41x10-7). These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.13.21267725

ABSTRACT

Vaccination provides a powerful tool for mitigating and controlling the COVID-19 pandemic. However, a number of factors reduce these potential benefits. The first problem arises from heterogeneities in vaccine supply and uptake: from global inequities in vaccine distribution, to local variations in uptake derived from vaccine hesitancy. The second complexity is biological: though several COVID-19 vaccines offer substantial protection against infection and disease, ‘breakthrough’ reinfection of vaccinees (and subsequent retransmission from these individuals) can occur, driven especially by new viral variants. Here, using a simple epidemiological model, we show that the combination of infection of remaining susceptible individuals and breakthrough infections of vaccinees can have significant effects in promoting infection of invading variants, even when vaccination rates are high and onward transmission from vaccinees relatively weak. Elaborations of the model show how heterogeneities in immunity and mixing between vaccinated and unvaccinated sub-populations modulate these effects, underlining the importance of quantifying these variables. Overall, our results indicate that high vaccination coverage still leaves no room for complacency if variants are circulating that can elude immunity, even if this happens at very low rates.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.04.21264507

ABSTRACT

Host genomic information, specifically genomic variations, may characterize susceptibility to disease and identify people with a higher risk of harm, leading to better targeting of care and vaccination. Italy was the epicentre for the spread of COVID-19 in Europe, the first country to go into a national lockdown and has one of the highest COVID-19 associated mortality rates. Qatar, on the other hand has a very low mortality rate. In this study, we compared whole-genome sequencing data of 14398 adults and Qatari-national to 925 Italian individuals. We also included in the comparison whole-exome sequence data from 189 Italian laboratory confirmed COVID-19 cases. We focused our study on a curated list of 3619 candidate genes involved in innate immunity and host-pathogen interaction. Two population-gene metric scores, the Delta Singleton-Cohort variant score (DSC) and Sum Singleton- Cohort variant score (SSC), were applied to estimate the presence of selective constraints in the Qatari population and in the Italian cohorts. Results based on DSC SSC metrics demonstrated a different selective pressure on three genes (MUC5AC, ABCA7, FLNA) between Qatari and Italian populations. This study highlighted the genetic differences between Qatari and Italian populations and identified a subset of genes involved in innate immunity and host-pathogen interaction


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.19.21257433

ABSTRACT

Qatar, a state that has a diverse population consisting mainly of foreign residents, has experienced a large COVID19 outbreak. In this study, we report on 2634 SARS-CoV-2 whole-genome sequences from infected patients in Qatar between March-2020 and March-2021, representing 1.5% of all positive cases in this period. Despite the restrictions on international travel, the viruses sampled from the populace of Qatar mirrored nearly the entire global population’s genomic diversity with nine predominant viral lineages that were sustained by local transmission chains and the emergence of mutations that are likely to have originated in Qatar. We reported an increased number of mutations and deletions in B.1.1.7 and B.1.351 lineages in a short period. These findings raise the imperative need to continue the ongoing genomic surveillance that has been an integral part of the national response to monitor the SARS-CoV-2 profile and re-emergence in Qatar.


Subject(s)
COVID-19
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.01.21250944

ABSTRACT

As the threat of Covid-19 continues and in the face of vaccine dose shortages and logistical challenges, various deployment strategies are being proposed to increase population immunity levels. How timing of delivery of the second dose affects infection burden but also prospects for the evolution of viral immune escape are critical questions. Both hinge on the strength and duration (i.e. robustness) of the immune response elicited by a single dose, compared to natural and two-dose immunity. Building on an existing immuno-epidemiological model, we find that in the short-term, focusing on one dose generally decreases infections, but longer-term outcomes depend on this relative immune robustness. We then explore three scenarios of selection, evaluating how different second dose delays might drive immune escape via a build-up of partially immune individuals. Under certain scenarios, we find that a one-dose policy may increase the potential for antigenic evolution. We highlight the critical need to test viral loads and quantify immune responses after one vaccine dose, and to ramp up vaccination efforts throughout the world.


Subject(s)
COVID-19
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.18.20248226

ABSTRACT

A recent report found that rare predicted loss-of-function (pLOF) variants across 13 candidate genes in TLR3- and IRF7-dependent type I IFN pathways explain up to 3.5% of severe COVID-19 cases. We performed whole-exome or whole-genome sequencing of 1,934 COVID-19 cases (713 with severe and 1,221 with mild disease) and 15,251 ancestry-matched population controls across four independent COVID-19 biobanks. We then tested if rare pLOF variants in these 13 genes were associated with severe COVID-19. We identified only one rare pLOF mutation across these genes amongst 713 cases with severe COVID-19 and observed no enrichment of pLOFs in severe cases compared to population controls or mild COVID-19 cases. We find no evidence of association of rare loss-of-function variants in the proposed 13 candidate genes with severe COVID-19 outcomes.


Subject(s)
COVID-19
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.18.423106

ABSTRACT

The Spike (S)-protein of SARS-CoV-2 binds host-cell receptor ACE2 and requires proteolytic 'priming' (S1/S2) and 'fusion-activation' (S2') for viral entry. The S-protein furin-like motifs PRRAR685{downarrow} and KPSKR815{downarrow} indicated that proprotein convertases promote virus entry. We demonstrate that furin and PC5A induce cleavage at both sites, ACE2 enhances S2' processing, and their pharmacological inhibition (BOS-inhibitors) block endogenous cleavages. S1/S2-mutations (S1/S2) limit S-protein-mediated cell-to-cell fusion, similarly to BOS-inhibitors. Unexpectedly, TMPRSS2 does not cleave at S1/S2 or S2', but it can: (i) cleave/inactivate S-protein into S2a/S2b; (ii) shed ACE2; (iii) cleave S1-subunit into secreted S1', activities inhibited by Camostat. In lung-derived Calu-3 cells, BOS-inhibitors and S1/S2 severely curtail 'pH-independent' viral entry, and BOS-inhibitors alone/with Camostat potently reduce infectious viral titer and cytopathic effects. Overall, our results show that: furin plays a critical role in generating fusion-competent S-protein, and indirectly, TMPRSS2 promotes viral entry, supporting furin and TMPRSS2 inhibitors as potential antivirals against SARS-CoV-2

8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.20.423533

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic has caused millions of deaths and will continue to exact incalculable tolls worldwide. While great strides have been made toward understanding and combating the mechanisms of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection, relatively little is known about the individual SARS-CoV-2 proteins that contribute to pathogenicity during infection and that cause neurological sequela after viral clearance. We used Drosophila to develop an in vivo model that characterizes mechanisms of SARS-CoV-2 pathogenicity, and found ORF3a adversely affects longevity and motor function by inducing apoptosis and inflammation in the nervous system. Chloroquine alleviated ORF3a induced phenotypes in the CNS, arguing our Drosophila model is amenable to high throughput drug screening. Our work provides novel insights into the pathogenic nature of SARS-CoV-2 in the nervous system that can be used to develop new treatment strategies for post-viral syndrome.


Subject(s)
Severe Acute Respiratory Syndrome , Death , COVID-19 , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL